A LMI-based approach to global asymptotic stability of neural networks with time varying delays
نویسنده
چکیده
In this paper, the asymptotic stability of neural networks with time varying delay is studied by using the nonsmooth analysis, Lyapunov functional method and linear matrix inequality (LMI) technique. It is noted that the proposed results do not require smoothness of the behaved function and activation function as well as boundedness of the activation function. Several sufficient conditions are presented to show the uniqueness and the global asymptotical stability of the equilibrium point. Also, a high-dimensional matrix condition to ensure the uniqueness and the global asymptotical stability of equilibrium point can be reduced to a lowdimensional condition. The obtained results are easy to apply and improve some earlier works. Finally, we give two simulations to justify the theoretical analysis in this paper.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملRobust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملGlobal Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays
In this paper, a bidirectional ring network with three cells and different time delays is presented. To propose this model which is a good extension of three-unit neural networks, coupled cell network theory and neural network theory are applied. In this model, every cell has self-connections without delay but different time delays are assumed in other connections. A suitable Lyapun...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملFurther result on asymptotic stability criterion of cellular neural networks with time-varying discrete and distributed delays
Based on a recent work and the linear matrix inequality (LMI) optimization approach, we extend the recent work on global asymptotic stability of a class of neural networks to uncertain cellular neural networks with time-varying discrete and distributed delays. 2006 Elsevier Inc. All rights reserved.
متن کامل